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Clinical Implications
CAD/CAM composite resins may provide better fracture resistance for nonretentive 
ultra-thin occlusal veneers in posterior teeth with high load requirements. If porce-
lain is required, e.max CAD may be indicated only for normal occlusal conditions. 

Statement of problem. Ultra-thin bonded posterior occlusal veneers represent a conservative alternative to traditional 
inlays and complete coverage crowns for the treatment of severe erosive lesions. There is a lack of data regarding selec-
tion of the most appropriate material and its influence on fatigue resistance, which may affect restoration longevity.

Purpose. The purpose of this study was to assess the influence of CAD/CAM restorative material (ceramic vs. com-
posite resin) on fatigue resistance of ultra-thin occlusal veneers.

Material and methods. A standardized nonretentive tooth preparation (simulating advanced occlusal erosion) was 
applied to 40 extracted molars including removal of occlusal enamel, and immediate dentin sealing (Optibond FL). 
All teeth were restored with a 0.6 mm-thick occlusal veneer (Cerec3 chairside CAD/CAM system). Reinforced ceram-
ics (Empress CAD and e.max CAD) and composite resins (Paradigm MZ100 and XR (experimental blocks)) were 
used to mill the restorations (n=10). The intaglio surfaces were HF-etched and silanated (reinforced ceramics) or 
airborne-particle abraded and silanated (composite resins). Preparations were airborne-particle abraded and etched 
before restoration insertion. All restorations were adhesively luted with preheated Filtek Z100. Cyclic isometric loading 
was applied at 5 Hz, beginning with a load of 200N (x5,000), followed by stages of 400, 600, 800, 1000, 1200 and 
1,400N at a maximum of 30,000 cycles each. The number of cycles at initial failure (first cracks) was recorded. Speci-
mens were loaded until catastrophic failure (lost restoration fragment) or to a maximum of 185,000 cycles. Groups 
were compared using the life table survival analysis (α=.008, Bonferroni-method).

Results. Empress CAD and e.max CAD initially failed at an average load of 500N and 800N, respectively with no specimen 
withstanding all 185,000 load cycles (survival 0%); with MZ100 and XR the survival rate was 60% and 100%, respectively.

Conclusions. Both composite resins (MZ100 and XR) increased the fatigue resistance of ultra-thin occlusal veneers 
(P<.001) when compared to the ceramics evaluated (Empress CAD and e.max CAD). (J Prosthet Dent 2011;105:217-226)
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The progressive reduction of 
enamel thickness is a biological con-
dition resulting from the aging pro-
cess.1 However, the premature and 
accelerated loss of enamel by gastro-
esophageal reflux disease (GERD) or 
bulimia nervosa may occur in adoles-
cence or childhood, with destructive 
consequences (Fig. 1).2,3 As mineral 
loss is slow, gradual and often pain-
less,4 dental erosion is usually unno-
ticed by parents, patients and even 
dentists. It is habitually diagnosed 
at an advanced stage of the disorder, 
when a substantial loss of dental tissue 
has occurred3,5-7 While the treatment 
for dental erosion should be initially 
focused on the etiology and preven-
tion of further destruction,3,8 the re-
storative phase requires a careful ap-
proach, depending on the degree of 
damage. Incipient lesions may only call 
for a clinical follow-up (for example, 
standardized photographs and accu-
rate periodic impressions), noninva-
sive dentin sealing with a filled dentin 
bonding agent, or conservative direct 
composite resin restorations.3 

However, treatment of patients 
with severe generalized erosion and 
wear is more complex. Clinicians may 
disagree about the best restorative 
strategy that also fulfills the complex 
occlusal requirements.5-7 The ma-
jor challenges are 1) wear may have 
been compensated by tooth eruption 
(maintaining occlusal vertical dimen-
sion), 2) restoring the shape and anat-

omy of the dentition often involves 
reducing sound dental tissues and 3) 
there is a wide range in the amount of 
reduction required by the different re-
storative approaches.9 In addition, re-
storative procedures must also consid-
er the patients’ desires and awareness 
of esthetics and tissue conservation.10 
Treatment involving more tooth re-
duction, for patients where substantial 
amount of dental tissues have already 
been lost by erosion, may be consid-
ered inappropriate.

Restoring advanced erosive le-
sions solely by using additive adhesive 
techniques, allowing strategic mini-
mal reduction of sound dental struc-
ture (non-retentive design or prefer-
ably “no preparation”), may be the 
best alternative.11-14 It is not known, 
however, which restorative material 
is best. Only bonded ceramics and 
composite resins address the previ-
ously mentioned biomimetic prin-
ciples of utmost tissue conservation 
and esthetics. The choice of ceramics 
as an enamel replacement is advo-
cated10,11,15 and relies primarily on the 
strength and thickness of the materi-
al,15,16 as well as on effective bonding 
to the underlying dental substrate,17,18 
mimicking the function of the denti-
noenamel junction.1 The development 
of ceramics that are stronger (such as 
lithium disilicate glass ceramic)19 but 
still etchable and machinable20 has 
extended the indications for bonded 
ceramic restorations. 

The performance of composite 
resins have also improved significantly 
during the last decade,21-24 through a 
superior bond between the different 
phases (enabling appropriate stress 
transfer)25,26 and various post-polym-
erization treatments.23,27 Key proper-
ties of composite resin restorations 
include their low abrasiveness to 
antagonistic teeth (enamel preserva-
tion)28 and low elastic modulus, al-
lowing more absorption of functional 
stresses through deformation.29 Fa-
tigue resistance of thick CAD/CAM 
(Computer-Aided Design/Comput-
er-Aided Manufacturing) composite 
resin overlays have exceeded that of 
porcelain ones.30,31 However, there is 
a lack of data for ultra-thin ceramic 
and composite resin overlays or oc-
clusal veneers.

Therefore, the purpose of this in 
vitro study was to assess the influence 
of CAD/CAM restorative material 
(ceramic vs. composite resin) on the 
fatigue resistance of ultra-thin occlu-
sal veneers. The null hypotheses were 
that (1) there would be no influence 
of material selection on the fatigue re-
sistance of ultra-thin (0.6 mm thick) 
occlusal veneers, and (2) restoration 
thickness would have no influence of 
the fatigue resistance of occlusal ve-
neers. This null hypothesis was tested 
by including previous data from the 
authors regarding 1.2 mm-thick occlu-
sal veneers. 

 1  A-B, Severe erosion of 32-year-old patient caused by gastroesophageal reflux disease. Courtesy of Dr. Fransesca 
Vailati, University of Geneva, Switzerland.
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MATERIAL AND METHODS

Once approval was obtained 
from both the Ethical Committee of 
the Federal University of Santa Cata-
rina and the University of Southern 
California Review Board, 40 freshly 
extracted sound human maxillary 
molars were stored in 0.1% thymol 
solution (Tymol Crystal; Merck KGaA, 
Darmstadt, Germany). Teeth were in-
serted in a special positioning device 
filled with acrylic resin (Palapress; 
Heraeus Kulzer GmbH, Hanau, Ger-
many), embedding the root up to 3 
mm below the cementoenamel junc-
tion (CEJ).

 
Tooth preparation

A standardized tooth preparation 
with the purpose of simulating ad-
vanced occlusal erosion was applied 
to all specimens. First, the occlusal 
enamel was selectively removed us-
ing a round-ended tapered diamond 
rotary cutting instrument (6850-023, 
Brasseler USA, Savannah, Ga). Cus-
pal inclination was kept as constant 
as possible by maintaining the buc-
cal and palatal margins at approxi-
mately 5.5 mm from the CEJ and 2.3 
to 2.6 mm above the central groove 
(Fig. 2A). Once the preparation was 
completed, immediate dentin seal-
ing was accomplished using a 3-step 
etch-and-rinse dentin bonding agent 
(OptiBond FL; Kerr Corp, Orange, 
Calif ) following the manufacturer’s 
instructions: 15-second dentin etch-
ing with 37.5% phosphoric acid (Ul-
tra-Etch; Ultradent, South Jordan, 
Utah), copious rinsing, careful air dry-
ing for 3-5 seconds with no desicca-
tion, application of the primer with a 
light brushing motion for 15 seconds 
(Fig. 2B), air drying for 3-5 seconds, 
and application of adhesive resin only 
on dentin by gentle brushing for 20 
seconds (no air thinning). The adhe-
sive was then light-polymerized for 20 
seconds at 1000mW/cm2 (Allegro; 
Den-Mat, Santa Maria, Calif ) with 
an additional 10 seconds under an air 
barrier (K-Y Jelly, Johnson & Johnson, 

New Brunswick, NJ) to reduce the 
oxygen-inhibition layer. Excess adhe-
sive resin was then removed from the 
surrounding enamel with a round dia-
mond rotary cutting instrument (801-
023, Brasseler USA, Savannah, Ga) at 
1,500 rpm (Fig. 2C). Each tooth was 
then stored in distilled water for 24 
hours before the designing, machin-
ing and adhesive placement of the 
CAD/CAM restorations.

 

Design and production of occlusal 
veneers.

The molars were restored using 
the Cerec 3 CAD/CAM system (Cerec 
software v3.03.; Sirona Dental Sys-
tems GmbH, Bensheim, Germany). 
All specimens were fitted with a stan-
dardized overlay from the Cerec data-
base (third maxillary molar, Lee Culp 
Youth database). Using the Design 
Tools of the Cerec Software (version 

 2  A, Tooth preparation with standard cuspal inclination 
(measurements and dimensions in mm). B, Immediate dentin 
sealing. C, Removal of excess adhesive resin from enamel.

A

B

C



218 Volume 105 Issue 4

The Journal of Prosthetic Dentistry

219April 2011

Schlichting et alSchlichting et al

The progressive reduction of 
enamel thickness is a biological con-
dition resulting from the aging pro-
cess.1 However, the premature and 
accelerated loss of enamel by gastro-
esophageal reflux disease (GERD) or 
bulimia nervosa may occur in adoles-
cence or childhood, with destructive 
consequences (Fig. 1).2,3 As mineral 
loss is slow, gradual and often pain-
less,4 dental erosion is usually unno-
ticed by parents, patients and even 
dentists. It is habitually diagnosed 
at an advanced stage of the disorder, 
when a substantial loss of dental tissue 
has occurred3,5-7 While the treatment 
for dental erosion should be initially 
focused on the etiology and preven-
tion of further destruction,3,8 the re-
storative phase requires a careful ap-
proach, depending on the degree of 
damage. Incipient lesions may only call 
for a clinical follow-up (for example, 
standardized photographs and accu-
rate periodic impressions), noninva-
sive dentin sealing with a filled dentin 
bonding agent, or conservative direct 
composite resin restorations.3 

However, treatment of patients 
with severe generalized erosion and 
wear is more complex. Clinicians may 
disagree about the best restorative 
strategy that also fulfills the complex 
occlusal requirements.5-7 The ma-
jor challenges are 1) wear may have 
been compensated by tooth eruption 
(maintaining occlusal vertical dimen-
sion), 2) restoring the shape and anat-

omy of the dentition often involves 
reducing sound dental tissues and 3) 
there is a wide range in the amount of 
reduction required by the different re-
storative approaches.9 In addition, re-
storative procedures must also consid-
er the patients’ desires and awareness 
of esthetics and tissue conservation.10 
Treatment involving more tooth re-
duction, for patients where substantial 
amount of dental tissues have already 
been lost by erosion, may be consid-
ered inappropriate.

Restoring advanced erosive le-
sions solely by using additive adhesive 
techniques, allowing strategic mini-
mal reduction of sound dental struc-
ture (non-retentive design or prefer-
ably “no preparation”), may be the 
best alternative.11-14 It is not known, 
however, which restorative material 
is best. Only bonded ceramics and 
composite resins address the previ-
ously mentioned biomimetic prin-
ciples of utmost tissue conservation 
and esthetics. The choice of ceramics 
as an enamel replacement is advo-
cated10,11,15 and relies primarily on the 
strength and thickness of the materi-
al,15,16 as well as on effective bonding 
to the underlying dental substrate,17,18 
mimicking the function of the denti-
noenamel junction.1 The development 
of ceramics that are stronger (such as 
lithium disilicate glass ceramic)19 but 
still etchable and machinable20 has 
extended the indications for bonded 
ceramic restorations. 

The performance of composite 
resins have also improved significantly 
during the last decade,21-24 through a 
superior bond between the different 
phases (enabling appropriate stress 
transfer)25,26 and various post-polym-
erization treatments.23,27 Key proper-
ties of composite resin restorations 
include their low abrasiveness to 
antagonistic teeth (enamel preserva-
tion)28 and low elastic modulus, al-
lowing more absorption of functional 
stresses through deformation.29 Fa-
tigue resistance of thick CAD/CAM 
(Computer-Aided Design/Comput-
er-Aided Manufacturing) composite 
resin overlays have exceeded that of 
porcelain ones.30,31 However, there is 
a lack of data for ultra-thin ceramic 
and composite resin overlays or oc-
clusal veneers.

Therefore, the purpose of this in 
vitro study was to assess the influence 
of CAD/CAM restorative material 
(ceramic vs. composite resin) on the 
fatigue resistance of ultra-thin occlu-
sal veneers. The null hypotheses were 
that (1) there would be no influence 
of material selection on the fatigue re-
sistance of ultra-thin (0.6 mm thick) 
occlusal veneers, and (2) restoration 
thickness would have no influence of 
the fatigue resistance of occlusal ve-
neers. This null hypothesis was tested 
by including previous data from the 
authors regarding 1.2 mm-thick occlu-
sal veneers. 

 1  A-B, Severe erosion of 32-year-old patient caused by gastroesophageal reflux disease. Courtesy of Dr. Fransesca 
Vailati, University of Geneva, Switzerland.

A B

MATERIAL AND METHODS

Once approval was obtained 
from both the Ethical Committee of 
the Federal University of Santa Cata-
rina and the University of Southern 
California Review Board, 40 freshly 
extracted sound human maxillary 
molars were stored in 0.1% thymol 
solution (Tymol Crystal; Merck KGaA, 
Darmstadt, Germany). Teeth were in-
serted in a special positioning device 
filled with acrylic resin (Palapress; 
Heraeus Kulzer GmbH, Hanau, Ger-
many), embedding the root up to 3 
mm below the cementoenamel junc-
tion (CEJ).

 
Tooth preparation

A standardized tooth preparation 
with the purpose of simulating ad-
vanced occlusal erosion was applied 
to all specimens. First, the occlusal 
enamel was selectively removed us-
ing a round-ended tapered diamond 
rotary cutting instrument (6850-023, 
Brasseler USA, Savannah, Ga). Cus-
pal inclination was kept as constant 
as possible by maintaining the buc-
cal and palatal margins at approxi-
mately 5.5 mm from the CEJ and 2.3 
to 2.6 mm above the central groove 
(Fig. 2A). Once the preparation was 
completed, immediate dentin seal-
ing was accomplished using a 3-step 
etch-and-rinse dentin bonding agent 
(OptiBond FL; Kerr Corp, Orange, 
Calif ) following the manufacturer’s 
instructions: 15-second dentin etch-
ing with 37.5% phosphoric acid (Ul-
tra-Etch; Ultradent, South Jordan, 
Utah), copious rinsing, careful air dry-
ing for 3-5 seconds with no desicca-
tion, application of the primer with a 
light brushing motion for 15 seconds 
(Fig. 2B), air drying for 3-5 seconds, 
and application of adhesive resin only 
on dentin by gentle brushing for 20 
seconds (no air thinning). The adhe-
sive was then light-polymerized for 20 
seconds at 1000mW/cm2 (Allegro; 
Den-Mat, Santa Maria, Calif ) with 
an additional 10 seconds under an air 
barrier (K-Y Jelly, Johnson & Johnson, 

New Brunswick, NJ) to reduce the 
oxygen-inhibition layer. Excess adhe-
sive resin was then removed from the 
surrounding enamel with a round dia-
mond rotary cutting instrument (801-
023, Brasseler USA, Savannah, Ga) at 
1,500 rpm (Fig. 2C). Each tooth was 
then stored in distilled water for 24 
hours before the designing, machin-
ing and adhesive placement of the 
CAD/CAM restorations.

 

Design and production of occlusal 
veneers.

The molars were restored using 
the Cerec 3 CAD/CAM system (Cerec 
software v3.03.; Sirona Dental Sys-
tems GmbH, Bensheim, Germany). 
All specimens were fitted with a stan-
dardized overlay from the Cerec data-
base (third maxillary molar, Lee Culp 
Youth database). Using the Design 
Tools of the Cerec Software (version 

 2  A, Tooth preparation with standard cuspal inclination 
(measurements and dimensions in mm). B, Immediate dentin 
sealing. C, Removal of excess adhesive resin from enamel.

A

B

C



220 Volume 105 Issue 4

The Journal of Prosthetic Dentistry

221April 2011

Schlichting et al Schlichting et al

3.03; Sirona Dental Systems) set in 
Master Mode, the occlusal surface 
was positioned to generate an aver-
age thickness of 0.6 mm at the central 
groove, maximum of 1.3 mm at the 
cusp tip and 1.0 mm at the internal 
cusp slope (Fig. 3A). With the pur-
pose of standardization in form and 
anatomy, the design of the restora-
tion was obtained by the sole use of 
the “position” tools (translation and 
rotation), without editing of the origi-

nal shape produced by the software.
Twenty restorations were milled 

using reinforced glass ceramics, 10 
from leucite ceramic blocks Empress 
CAD (Ivoclar Vivadent AG, Schaan, 
Liechtenstein) (group ECAD) and an-
other group of 10 restorations from 
lithium disilicate blocks e.max CAD 
(Ivoclar Vivadent AG) (group EMAX). 
Twenty restorations were milled using 
composite resin blocks, 10 from Para-
digm MZ100 blocks (3M ESPE, St 

Paul, Minn) (group MZ100) and an-
other group of 10 restorations from 
XR experimental blocks (reinforced 
with short polyethylene fibers) (Kerr 
Corp) (group XR). A power analysis to 
determine adequate sample size was 
not performed.

All restorations were milled in 
Endo mode with the sprue located 
at the lingual surface (Fig. 3B) and 
inspected to detect eventual cracks 
generated by milling. For lithium disil-
icate blocks, restorations were crystal-
lized in a ceramic furnace (Austromat 
D4; DEKEMA Dental-Keramiköfen 
GmbH, Freilassing, Germany) accord-
ing to the manufacturer’s recommen-
dations (Ivoclar Vivadent AG). ECAD 
and EMAX restorations were polished 
using diamond ceramic polishers (Di-
alite; Brasseler USA), while MZ100 
and XR were finished with brushes 
(Jiffy Composite Polishing Brushes; 
Ultradent).

 
Adhesive placement

Surface conditioning of ceramic 
restorations included 9% hydrofluoric 
acid etching (Porcelain Etch; Ultra-
dent), 60 seconds for ECAD and 20 
seconds for EMAX. Following thor-
ough rinsing for 20 seconds, post-
etching cleaning included brushing 
the restorations with phosphoric acid 
(Ultraetch) for one minute, followed 
by rinsing for 20 seconds and immer-
sion in distilled water in an ultrasonic 
bath for 3 minutes. After air drying, 
the intaglio surfaces were silanated 
(Silane, Ultradent) and heat dried at 
100oC for 5 minutes (DI500 oven; 
Coltène AG, Alstätten, Switzerland). 
The same protocol was used for res-
torations of groups MZ and XR except 
the hydrofluoric etching step, which 
was replaced by airborne-particle 
abrasion with 27-µm aluminum oxide 
at 30 psi (Rondoflex plus 360; KaVo 
Dental, Charlotte, NC).

Tooth preparations were all air-
borne-particle abraded (Rondoflex 
plus 360; KaVo Dental) and etched 
for 30 seconds with 37.5% phosphor-
ic acid (Ultra-Etch; Ultradent), rinsed 

 3  A, Ultra-thin occlusal veneer with desired clearances (in mm). B, Inspec-
tion of 0.6 mm-thick ECAD restoration. C, Positioning specimen before test-
ing (7 mm-diameter resin sphere) following adhesive placement and finishing.

A

C

B

and dried. The adhesive resin (Opti-
bond FL, bottle 2; Kerr Corp) was ap-
plied to both fitting surfaces of the 
restoration and the tooth and left un-
polymerized. Following the applica-
tion of the preheated luting material 
to the tooth (Filtek Z100; 3M ESPE), 
preheated at 68oC in Calset (AdDent, 
Danbury, Conn) the restoration was 
carefully seated and then subjected 
to a standardized load of 6N (by ap-
plying weights through a custom de-
vice) during excess luting material 
removal (CompoSculp DD1/DD2; 
Suter, Chico, Calif ) and initial light-
polymerization.12,32 Each surface was 
exposed at 1000mW/cm2 (Allegro; 
Den-Mat) for 60 seconds (20 seconds 
per surface, repeated 3 times). The 
margins were then covered with an air 
barrier (K-Y Jelly; Johnson & Johnson) 
and light-polymerized for an addi-
tional 20 seconds. The margins were 
finished and polished with diamond 
ceramic polishers (W16DG, W16DM, 
W16D; CeramiPro Dialite; Brasseler 
USA) (all groups) and silicon carbide 
impregnated bristle brushes (Regu-
lar Jiffy Composite Polishing Brush; 
Ultradent) (MZ100, XR). Each speci-
men was then stored in distilled water 
at ambient temperature for 24 hours 
before testing.

 
Fatigue testing

Masticatory forces were applied 
using closed-loop servo-hydraulics 
(MiniBionix II MTS Systems, Eden 
Prairie, Minn) with a 7 mm-diameter 
composite resin sphere (Filtek Z100, 
3M ESPE) post polymerized at 100oC 
for 5 minutes (Fig. 3C). Because of 
the standardized occlusal anatomy, 
each specimen was placed into the 
load chamber in the same and repro-
ducible position with the load sphere 
contacting simultaneously and equal-
ly the mesiobucal, distobucal and 
lingual cusps (tripod contact). The 
load chamber was filled with distilled 
water until complete immersion of 
the specimen. Isometric mastica-
tion (under load control) was simu-
lated at a frequency of 5 Hz, starting 

with a load of 200N for 5,000 cycles 
(preconditioning phase to guarantee 
predictable positioning of the sphere 
with the specimen)33 followed by 
stages of 400, 600, 800, 1000, 1200 
and 1,400N at a maximum of 30,000 
cycles each. The number of cycles 
endured at initial failure (see below 
in crack detection and tracking) was 
recorded. Specimens were loaded un-
til catastrophic failure (lost restora-
tion fragments) or to a maximum of 
185,000 cycles.

 
Crack detection and tracking

Initial failure was considered when 
a visible crack was detected and met 
2 criteria: length greater than or equal 
to 2 mm, and involved the surface of 
the restoration. Such criteria were es-
tablished because subsurface cracks 
or cracks smaller than 2 mm are par-
ticularly difficult to diagnose under 
normal clinical conditions. At the 
end of each load step, the specimens 
were evaluated in a 2-examiner agree-
ment by transillumination (Microlux; 
AdDent, Inc), optical microscope at 
x10 magnification (Leica MZ 125; 
Leica Microsystems GmbH; Wetzlar, 
Germany), and photographed un-
der standardized conditions at x1.5 
magnification (Nikon D70 and Medi-
cal Nikkor 120mm lens and close up 
lens; Nikon, Tokyo, Japan). The crack 
tracking procedure was performed 
until catastrophic failure or until 
completion of the 185,000 cycles.

The 4 groups’ endurance was 
compared using the life table survival 
analysis. At each time interval (de-
fined by each load step), the differ-
ence between the specimens starting 
the interval intact and the specimens 
cracking or failing during that interval 
was counted, providing the survival 
probability (%) at each load step. The 
influence of the restorative material 
on the cracking propensity was ob-
served comparing the survival curves 
using the log rank test at a significance 
level of .05. Differences were localized 
using pairwise post hoc comparisons 
with the same test at a significance 

level of .008 (Bonferroni correction 
for 6 comparisons). The statistical 
analysis was performed with Med-
Calc, v11.0.1. (Mariakerke, Belgium). 
Additional data from a previous study 
about 1.2 mm-thick occlusal veneers 
by the same operators and author in 
controlled identical conditions12 were 
included. The life table survival analy-
sis was used to compare the fatigue re-
sistance of 0.6 mm vs. 1.2 mm ECAD 
and EMAX ceramic occlusal veneers. 
The influence of the thickness on the 
crack propensity was analyzed by using 
the log-rank test at a significance level 
of .05. Pairwise post hoc comparisons 
were used to locate the differences at 
an alpha value of 0.008 (Bonferroni 
correction for 6 comparisons).

RESULTS

In group ECAD, restorations failed 
(initial failure) at an average load of 
500N (38,475 cycles), in group EMAX 
at an average load of 800N (87,089 
cycles) and none of the specimens 
withstood all 185,000 load cycles 
(survival = 0% for both ECAD and 
EMAX). For groups MZ100 and XR 
the survival rate was 60% and 100%, 
respectively. Life table survival analy-
sis (Fig. 4) revealed significant differ-
ences among groups (P<.001). Post 
hoc tests (Table I) showed higher fa-
tigue resistance of MZ100 compared 
to ECAD and EMAX (P<.001 for 
both) and higher fatigue resistance of 
EMAX compared to ECAD (P<.001). 
XR was also significantly stronger 
than ECAD and EMAX (P<.001) but 
not different from MZ100 (P=.03). 
Among the 40 specimens, 3 teeth (all 
in group ECAD) demonstrated failure 
with loss of a restoration fragment 
(Fig. 5). However, none of the speci-
mens experienced loss or significant 
damage of intact tooth structure.

Comparisons of 0.6 mm and 1.2 
mm-thick ceramic occlusal veneers 
(Table II) showed higher fatigue re-
sistance of EMAX (1.2 mm-thick) 
compared to ECAD (1.2mm-thick), 
EMAX and ECAD (P<.001 for all 
groups). ECAD (1.2mm-thick) was 
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3.03; Sirona Dental Systems) set in 
Master Mode, the occlusal surface 
was positioned to generate an aver-
age thickness of 0.6 mm at the central 
groove, maximum of 1.3 mm at the 
cusp tip and 1.0 mm at the internal 
cusp slope (Fig. 3A). With the pur-
pose of standardization in form and 
anatomy, the design of the restora-
tion was obtained by the sole use of 
the “position” tools (translation and 
rotation), without editing of the origi-

nal shape produced by the software.
Twenty restorations were milled 

using reinforced glass ceramics, 10 
from leucite ceramic blocks Empress 
CAD (Ivoclar Vivadent AG, Schaan, 
Liechtenstein) (group ECAD) and an-
other group of 10 restorations from 
lithium disilicate blocks e.max CAD 
(Ivoclar Vivadent AG) (group EMAX). 
Twenty restorations were milled using 
composite resin blocks, 10 from Para-
digm MZ100 blocks (3M ESPE, St 

Paul, Minn) (group MZ100) and an-
other group of 10 restorations from 
XR experimental blocks (reinforced 
with short polyethylene fibers) (Kerr 
Corp) (group XR). A power analysis to 
determine adequate sample size was 
not performed.

All restorations were milled in 
Endo mode with the sprue located 
at the lingual surface (Fig. 3B) and 
inspected to detect eventual cracks 
generated by milling. For lithium disil-
icate blocks, restorations were crystal-
lized in a ceramic furnace (Austromat 
D4; DEKEMA Dental-Keramiköfen 
GmbH, Freilassing, Germany) accord-
ing to the manufacturer’s recommen-
dations (Ivoclar Vivadent AG). ECAD 
and EMAX restorations were polished 
using diamond ceramic polishers (Di-
alite; Brasseler USA), while MZ100 
and XR were finished with brushes 
(Jiffy Composite Polishing Brushes; 
Ultradent).

 
Adhesive placement

Surface conditioning of ceramic 
restorations included 9% hydrofluoric 
acid etching (Porcelain Etch; Ultra-
dent), 60 seconds for ECAD and 20 
seconds for EMAX. Following thor-
ough rinsing for 20 seconds, post-
etching cleaning included brushing 
the restorations with phosphoric acid 
(Ultraetch) for one minute, followed 
by rinsing for 20 seconds and immer-
sion in distilled water in an ultrasonic 
bath for 3 minutes. After air drying, 
the intaglio surfaces were silanated 
(Silane, Ultradent) and heat dried at 
100oC for 5 minutes (DI500 oven; 
Coltène AG, Alstätten, Switzerland). 
The same protocol was used for res-
torations of groups MZ and XR except 
the hydrofluoric etching step, which 
was replaced by airborne-particle 
abrasion with 27-µm aluminum oxide 
at 30 psi (Rondoflex plus 360; KaVo 
Dental, Charlotte, NC).

Tooth preparations were all air-
borne-particle abraded (Rondoflex 
plus 360; KaVo Dental) and etched 
for 30 seconds with 37.5% phosphor-
ic acid (Ultra-Etch; Ultradent), rinsed 

 3  A, Ultra-thin occlusal veneer with desired clearances (in mm). B, Inspec-
tion of 0.6 mm-thick ECAD restoration. C, Positioning specimen before test-
ing (7 mm-diameter resin sphere) following adhesive placement and finishing.

A

C

B

and dried. The adhesive resin (Opti-
bond FL, bottle 2; Kerr Corp) was ap-
plied to both fitting surfaces of the 
restoration and the tooth and left un-
polymerized. Following the applica-
tion of the preheated luting material 
to the tooth (Filtek Z100; 3M ESPE), 
preheated at 68oC in Calset (AdDent, 
Danbury, Conn) the restoration was 
carefully seated and then subjected 
to a standardized load of 6N (by ap-
plying weights through a custom de-
vice) during excess luting material 
removal (CompoSculp DD1/DD2; 
Suter, Chico, Calif ) and initial light-
polymerization.12,32 Each surface was 
exposed at 1000mW/cm2 (Allegro; 
Den-Mat) for 60 seconds (20 seconds 
per surface, repeated 3 times). The 
margins were then covered with an air 
barrier (K-Y Jelly; Johnson & Johnson) 
and light-polymerized for an addi-
tional 20 seconds. The margins were 
finished and polished with diamond 
ceramic polishers (W16DG, W16DM, 
W16D; CeramiPro Dialite; Brasseler 
USA) (all groups) and silicon carbide 
impregnated bristle brushes (Regu-
lar Jiffy Composite Polishing Brush; 
Ultradent) (MZ100, XR). Each speci-
men was then stored in distilled water 
at ambient temperature for 24 hours 
before testing.

 
Fatigue testing

Masticatory forces were applied 
using closed-loop servo-hydraulics 
(MiniBionix II MTS Systems, Eden 
Prairie, Minn) with a 7 mm-diameter 
composite resin sphere (Filtek Z100, 
3M ESPE) post polymerized at 100oC 
for 5 minutes (Fig. 3C). Because of 
the standardized occlusal anatomy, 
each specimen was placed into the 
load chamber in the same and repro-
ducible position with the load sphere 
contacting simultaneously and equal-
ly the mesiobucal, distobucal and 
lingual cusps (tripod contact). The 
load chamber was filled with distilled 
water until complete immersion of 
the specimen. Isometric mastica-
tion (under load control) was simu-
lated at a frequency of 5 Hz, starting 

with a load of 200N for 5,000 cycles 
(preconditioning phase to guarantee 
predictable positioning of the sphere 
with the specimen)33 followed by 
stages of 400, 600, 800, 1000, 1200 
and 1,400N at a maximum of 30,000 
cycles each. The number of cycles 
endured at initial failure (see below 
in crack detection and tracking) was 
recorded. Specimens were loaded un-
til catastrophic failure (lost restora-
tion fragments) or to a maximum of 
185,000 cycles.

 
Crack detection and tracking

Initial failure was considered when 
a visible crack was detected and met 
2 criteria: length greater than or equal 
to 2 mm, and involved the surface of 
the restoration. Such criteria were es-
tablished because subsurface cracks 
or cracks smaller than 2 mm are par-
ticularly difficult to diagnose under 
normal clinical conditions. At the 
end of each load step, the specimens 
were evaluated in a 2-examiner agree-
ment by transillumination (Microlux; 
AdDent, Inc), optical microscope at 
x10 magnification (Leica MZ 125; 
Leica Microsystems GmbH; Wetzlar, 
Germany), and photographed un-
der standardized conditions at x1.5 
magnification (Nikon D70 and Medi-
cal Nikkor 120mm lens and close up 
lens; Nikon, Tokyo, Japan). The crack 
tracking procedure was performed 
until catastrophic failure or until 
completion of the 185,000 cycles.

The 4 groups’ endurance was 
compared using the life table survival 
analysis. At each time interval (de-
fined by each load step), the differ-
ence between the specimens starting 
the interval intact and the specimens 
cracking or failing during that interval 
was counted, providing the survival 
probability (%) at each load step. The 
influence of the restorative material 
on the cracking propensity was ob-
served comparing the survival curves 
using the log rank test at a significance 
level of .05. Differences were localized 
using pairwise post hoc comparisons 
with the same test at a significance 

level of .008 (Bonferroni correction 
for 6 comparisons). The statistical 
analysis was performed with Med-
Calc, v11.0.1. (Mariakerke, Belgium). 
Additional data from a previous study 
about 1.2 mm-thick occlusal veneers 
by the same operators and author in 
controlled identical conditions12 were 
included. The life table survival analy-
sis was used to compare the fatigue re-
sistance of 0.6 mm vs. 1.2 mm ECAD 
and EMAX ceramic occlusal veneers. 
The influence of the thickness on the 
crack propensity was analyzed by using 
the log-rank test at a significance level 
of .05. Pairwise post hoc comparisons 
were used to locate the differences at 
an alpha value of 0.008 (Bonferroni 
correction for 6 comparisons).

RESULTS

In group ECAD, restorations failed 
(initial failure) at an average load of 
500N (38,475 cycles), in group EMAX 
at an average load of 800N (87,089 
cycles) and none of the specimens 
withstood all 185,000 load cycles 
(survival = 0% for both ECAD and 
EMAX). For groups MZ100 and XR 
the survival rate was 60% and 100%, 
respectively. Life table survival analy-
sis (Fig. 4) revealed significant differ-
ences among groups (P<.001). Post 
hoc tests (Table I) showed higher fa-
tigue resistance of MZ100 compared 
to ECAD and EMAX (P<.001 for 
both) and higher fatigue resistance of 
EMAX compared to ECAD (P<.001). 
XR was also significantly stronger 
than ECAD and EMAX (P<.001) but 
not different from MZ100 (P=.03). 
Among the 40 specimens, 3 teeth (all 
in group ECAD) demonstrated failure 
with loss of a restoration fragment 
(Fig. 5). However, none of the speci-
mens experienced loss or significant 
damage of intact tooth structure.

Comparisons of 0.6 mm and 1.2 
mm-thick ceramic occlusal veneers 
(Table II) showed higher fatigue re-
sistance of EMAX (1.2 mm-thick) 
compared to ECAD (1.2mm-thick), 
EMAX and ECAD (P<.001 for all 
groups). ECAD (1.2mm-thick) was 
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 5  A-C, Specimen in group ECAD. A, Before testing. B, At initial failure (400N). C, Lost fragment at 1400N. D-F, Spec-
imen in group EMAX. D, Before testing. E, At initial failure (800N). F, After 185.000 cycles. G,H, Survived specimen in 
group MZ100. G, Before testing. H, After testing. I, J, Survived specimen in group XR. I, before testing. J, After testing.

 4  Life table survival distributions by materials at each load step (n=10).

Table I. Pairwise post hoc comparisons with the log-rank test (present study)
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also significantly stronger than ECAD 
(P=.0001) but not different from 
EMAX (P=.1027).

 
DISCUSSION

The null hypotheses were rejected 
because, 1) composite resins MZ100 
and XR had significantly increased fa-
tigue resistance with ultra-thin poste-
rior occlusal veneers when compared 
to the ceramics Empress CAD and 
e.max CAD, and 2) the restorative 
material thickness influenced the fa-
tigue resistance. The study also dem-
onstrated the feasibility of minimally 
invasive CAD/CAM ceramics and 
composite resins to treat severe ero-
sion lesions in posterior teeth.

CAD/CAM technology was cho-
sen due to its ability to control thick-
ness and anatomy of restorations 
during the fabrication process. It also 
allowed the standardization of the 
internal fit of the restoration as well 
as the mechanical properties of the 
restorative materials.20 Many poten-
tially confounding operator variables 
were avoided such as dental labora-
tory technicians’ skills and procedures 
involved in the fabrication process. 
This is especially important when us-
ing ultra-thin occlusal veneers. It can 
be questioned whether modern CAD/
CAM technology would allow the ma-
chining of restorations less than 1 mm 
thick (Fig. 3B). Each restoration was 
carefully inspected after milling, be-
fore and after insertion. In view of the 

results of the present study, that thin 
occlusal veneers (0.6 mm at the cen-
tral groove, maximum 1.3 mm at the 
cusp tip and 1.0 mm at the internal 
cusp slope) can be milled successfully 
with all the materials tested. Post-
milling cracks were observed only in 
2 instances and, there were no major 
marginal defects in any of the resto-
rations. It is difficult to determine 
whether those cracks were already 
inside the blocks or were generated 
during the milling process. According 
to Tsitrou and van Noort,9 who tried 
to fabricate thin crowns (0.6 mm oc-
clusal reduction) using ceramic and 
composite resin blocks, only MZ100 
could be milled ultra-thin without de-
fects or cracks. The ability to mill thin 
restorations may therefore also be 
influenced by the type of preparation 
(crown versus non-retentive occlusal 
veneer).

The design used in this study (ac-
celerated fatigue over the course of 
one day for each specimen), originally 
introduced by Fennis33 and used in 
several studies by Magne and Kne-
zevic,30,31,34 constitutes a reasonable 
balance between the simple load-to-
failure test and more sophisticated 
fatigue tests (minimum 1,000,000 
cycles).30,31 In the load-to-failure test, 
the specimen is forced to fail under 
displacement control of the load 
apparatus (similar to an automo-
tive crash test). This provides useful 
data under extreme conditions but 
little significance regarding clinical 

endurance. However, the time-con-
suming aspect of true fatigues tests 
(low-load/high-cycle) is a significant 
limitation. Fatigue behavior of dental 
materials is characterized by a well-
defined fatigue limit, above which the 
material fails quickly and below which 
there is long-term survival. 

The present study design encom-
passes a wide range of clinically-rel-
evant situations. The first half of the 
test lies inside the range of realistic 
occlusal forces in the posterior region, 
namely 8 to 880 N35 that covers loads 
from mastication and swallowing un-
til bruxism, respectively. The second 
half comprises the range of loads rare-
ly reached in ordinary circumstances, 
yet it covers situations such as trauma 
(high extrinsic loads)30,31 or intrinsic 
masticatory accidents (under masti-
cation loads but delivered to a small 
area due to a hard foreign body such 
as a pit or seed).36 The decision for 
using a composite resin sphere rather 
than stainless steel is also unique to 
this study but was previously suggest-
ed by Magne and Knezevic.31 Accord-
ing to Kelly,37 steel indenters tend to 
generate localized and intense point 
load, which are more likely to gener-
ate surface damage and powder-like 
debris by crushing (Hertzian cone-
cracks). The lower stiffness and high-
er wear of the composite resin sphere 
allowed more realistic simulation of 
tooth contacts through wear facets 
distributing the load without reaching 
the compressive limit of the tissues or 
restorative materials. 

At the beginning of the test (200 
N load step), the intact ball generated 
contact pressure of approximately 
200 MPa (3 contacts for approxi-
mately 1 mm2), while at the end of 
the fatigue test (1400 N), the worn 
ball produced a contact pressures 
of only 350 MPa (approximately 4 
mm2). The intrinsic wear of the antag-
onistic load sphere allowed the con-
tact pressure not to increase as fast 
as the increasing load. Kelly37 men-
tioned this essential aspect of this 
test, and suggested using large radii 
spheres or indent the specimen to re-

Table II. Pairwise post hoc comparisons with the log-rank test 
including previous data

ECAD

EMAX

ECAD/1.2

EMAX/1.2

Significant differences between porcelain tested (ECAD and EMAX: 0.6 mm-thick),

including groups from previous study12 (ECAD/1.2 and EMAX/1.2: 1.2 mm-thick)

with P value of 0.008 (Bonferroni-corrected for 6 comparsions).

<.001
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.001
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ECAD/1.2
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 5  A-C, Specimen in group ECAD. A, Before testing. B, At initial failure (400N). C, Lost fragment at 1400N. D-F, Spec-
imen in group EMAX. D, Before testing. E, At initial failure (800N). F, After 185.000 cycles. G,H, Survived specimen in 
group MZ100. G, Before testing. H, After testing. I, J, Survived specimen in group XR. I, before testing. J, After testing.

 4  Life table survival distributions by materials at each load step (n=10).

Table I. Pairwise post hoc comparisons with the log-rank test (present study)
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also significantly stronger than ECAD 
(P=.0001) but not different from 
EMAX (P=.1027).

 
DISCUSSION

The null hypotheses were rejected 
because, 1) composite resins MZ100 
and XR had significantly increased fa-
tigue resistance with ultra-thin poste-
rior occlusal veneers when compared 
to the ceramics Empress CAD and 
e.max CAD, and 2) the restorative 
material thickness influenced the fa-
tigue resistance. The study also dem-
onstrated the feasibility of minimally 
invasive CAD/CAM ceramics and 
composite resins to treat severe ero-
sion lesions in posterior teeth.

CAD/CAM technology was cho-
sen due to its ability to control thick-
ness and anatomy of restorations 
during the fabrication process. It also 
allowed the standardization of the 
internal fit of the restoration as well 
as the mechanical properties of the 
restorative materials.20 Many poten-
tially confounding operator variables 
were avoided such as dental labora-
tory technicians’ skills and procedures 
involved in the fabrication process. 
This is especially important when us-
ing ultra-thin occlusal veneers. It can 
be questioned whether modern CAD/
CAM technology would allow the ma-
chining of restorations less than 1 mm 
thick (Fig. 3B). Each restoration was 
carefully inspected after milling, be-
fore and after insertion. In view of the 

results of the present study, that thin 
occlusal veneers (0.6 mm at the cen-
tral groove, maximum 1.3 mm at the 
cusp tip and 1.0 mm at the internal 
cusp slope) can be milled successfully 
with all the materials tested. Post-
milling cracks were observed only in 
2 instances and, there were no major 
marginal defects in any of the resto-
rations. It is difficult to determine 
whether those cracks were already 
inside the blocks or were generated 
during the milling process. According 
to Tsitrou and van Noort,9 who tried 
to fabricate thin crowns (0.6 mm oc-
clusal reduction) using ceramic and 
composite resin blocks, only MZ100 
could be milled ultra-thin without de-
fects or cracks. The ability to mill thin 
restorations may therefore also be 
influenced by the type of preparation 
(crown versus non-retentive occlusal 
veneer).

The design used in this study (ac-
celerated fatigue over the course of 
one day for each specimen), originally 
introduced by Fennis33 and used in 
several studies by Magne and Kne-
zevic,30,31,34 constitutes a reasonable 
balance between the simple load-to-
failure test and more sophisticated 
fatigue tests (minimum 1,000,000 
cycles).30,31 In the load-to-failure test, 
the specimen is forced to fail under 
displacement control of the load 
apparatus (similar to an automo-
tive crash test). This provides useful 
data under extreme conditions but 
little significance regarding clinical 

endurance. However, the time-con-
suming aspect of true fatigues tests 
(low-load/high-cycle) is a significant 
limitation. Fatigue behavior of dental 
materials is characterized by a well-
defined fatigue limit, above which the 
material fails quickly and below which 
there is long-term survival. 

The present study design encom-
passes a wide range of clinically-rel-
evant situations. The first half of the 
test lies inside the range of realistic 
occlusal forces in the posterior region, 
namely 8 to 880 N35 that covers loads 
from mastication and swallowing un-
til bruxism, respectively. The second 
half comprises the range of loads rare-
ly reached in ordinary circumstances, 
yet it covers situations such as trauma 
(high extrinsic loads)30,31 or intrinsic 
masticatory accidents (under masti-
cation loads but delivered to a small 
area due to a hard foreign body such 
as a pit or seed).36 The decision for 
using a composite resin sphere rather 
than stainless steel is also unique to 
this study but was previously suggest-
ed by Magne and Knezevic.31 Accord-
ing to Kelly,37 steel indenters tend to 
generate localized and intense point 
load, which are more likely to gener-
ate surface damage and powder-like 
debris by crushing (Hertzian cone-
cracks). The lower stiffness and high-
er wear of the composite resin sphere 
allowed more realistic simulation of 
tooth contacts through wear facets 
distributing the load without reaching 
the compressive limit of the tissues or 
restorative materials. 

At the beginning of the test (200 
N load step), the intact ball generated 
contact pressure of approximately 
200 MPa (3 contacts for approxi-
mately 1 mm2), while at the end of 
the fatigue test (1400 N), the worn 
ball produced a contact pressures 
of only 350 MPa (approximately 4 
mm2). The intrinsic wear of the antag-
onistic load sphere allowed the con-
tact pressure not to increase as fast 
as the increasing load. Kelly37 men-
tioned this essential aspect of this 
test, and suggested using large radii 
spheres or indent the specimen to re-

Table II. Pairwise post hoc comparisons with the log-rank test 
including previous data

ECAD

EMAX
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Significant differences between porcelain tested (ECAD and EMAX: 0.6 mm-thick),

including groups from previous study12 (ECAD/1.2 and EMAX/1.2: 1.2 mm-thick)

with P value of 0.008 (Bonferroni-corrected for 6 comparsions).

<.001

<.001

.001

EMAX/1.2

<.001

.103

ECAD/1.2

<.001

EMAXECAD



224 Volume 105 Issue 4

The Journal of Prosthetic Dentistry

225April 2011

Schlichting et al Schlichting et al

duce the increase in contact pressure. 
It was also important to ensure that 
the composite resin used for the fab-
rication of the load sphere was strong 
enough to undergo the entire fatigue 
test and maintain contact regardless 
of the load step. Therefore, the load 
cusps were carefully inspected at each 
load step and only one sphere had to 
be replaced due to delamination. A 
fully functional restored natural tooth 
could be simulated, which represents 
the uniqueness of this protocol. Sim-
ulation of the periodontal ligament 
was omitted, because elastomers or 
silicone films usually used for this 
purpose may have accelerated degra-
dation; this would allow for excessive 
displacement of the tooth and could 
destabilize the servo-hydraulic con-
trol system.

Enamel and dentin are unique tis-
sues with highly specialized function. 
When restoring a tooth one should 
consider not only the restorative ma-
terials that best emulates enamel and 
dentin, but also consider the simula-
tion of the DEJ through the interfacial 
restoration-dentin bond,30,31 which 
can be considered a true compos-
ite structure.25 Using extremely thin 
“enamel-like” restorations, the bond-
ing strategy becomes yet more impor-
tant. Immediate dentin sealing (to 
seal freshly cut dentin surfaces with 
a dentin bonding agent immediately 
following tooth preparation, prior to 
making impressions), associated with 
a preheated light-polymerized com-

posite resin restorative material, as a 
luting agent,11,30,31,38 were used in this 
study. The advantages of this tech-
nique39-41 were evident, since in the 
ceramic groups, only 3 restorations 
lost fragments (ECAD at > 1000N 
with minimal involvement of the den-
tin bond), while all of ECAD restora-
tions displayed multiple “mosaic-like” 
cracks (Fig. 6). Among practical ad-
vantages of using a light-polymerizing 
restorative material to cement the oc-
clusal veneer is the unlimited time to 
place the restoration (compensating 
the difficulty of positioning them, be-
cause of the lack of insertion path).

The results of the present study 
agree with the findings by Magne and 
Knezevic,30 who demonstrated an 
increase in fatigue resistance of end-
odontically treated molars restored 
with MZ100 when compared to por-
celain (MKII, VITABLOCS MARK II; 
Vident, Brea, Calif ). Nevertheless, in 
the present study, no specimen un-
derwent catastrophic failures in the 
remaining tooth structure. Cracks 
were restricted to the restorations 
and remaining enamel. This fact high-
lights the advantage of minimally in-
vasive strategies,13,14,42 preserving the 
structural integrity of the teeth. The 
first cracks (initial failure), observed 
in both ECAD and EMAX groups 
could be explained by a previous nu-
meric simulation.43 The high tensile 
stresses in the central groove could 
not be withstood by the brittle ce-
ramics.43 Therefore, the energy was 

released by means of new surfaces, 
namely cracks37 (Figs. 5 and 6). From 
the present data it appears that the 
higher uniaxial flexural strength of 
ceramic blocks (256 and 127 MPa 
for EMAX and ECAD, respectively), 
compared to that of composite resin 
blocks (150 and 170 MPa for MZ100 
and XR respectively), does not cor-
relate with the survival rate (Fig. 3). 
In fact, strength data alone is unable 
to predict accurately the structural 
failure in complex structures made 
from multilayered materials.44 The 
failure triggered by the development 
of tensile stresses is much more sen-
sitive to the ratios of elastic moduli 
between the restorative material and 
the luting material and dentin, and 
much less to the intrinsic strength 
as well as the thickness of the mate-
rial.37 The relatively similar elastic 
modulus of the composite resin (ap-
proximately16-20MPa) and dentin 
(approximately18.5GPa)45  may have 
a key role in the tooth-restoration 
performance of the composite resin 
groups. In addition, the findings seem 
to correlate with the work of fracture 
of the various materials (K1c2/Emod): 
XR (571 J/m2) > Paradigm MZ100 
(141 J/m2) > e.max CAD (83 J/m2) 
> Empress CAD (21 J/m2) (obtained 
from additional testing). The work of 
fracture represents the energy used 
within the fracture process where a 
new surface is generated and consid-
ers the elastic modulus of the mate-
rial. Because of their higher strength, 
EMAX restorations started cracking 
at a step above that of ECAD resto-
rations. This difference disappeared 
when the thickness of ECAD restora-
tions was increased, as demonstrated 
when comparing 0.6 mm and 1.2 
mm-thick ceramic occlusal restora-
tions (Table II). 

Assuming that the first cracks ap-
peared at relatively high loads (end 
of the first half of the test) and that 
none of the ultra-thin restorations 
lost fragments, the lithium disilicate 
blocks can be recommended in pa-
tients with standard load require-
ments. However, the horizontal com-

 6  Specimen after testing in group ECAD (“mosaic-like” cracks).

ponent from the axial loading was not 
able to threaten the composite resin 
restorations in both MZ100 and XR 
groups, confirming the possibility of 
using these materials for restoring 
posterior teeth with thin or ultra-thin 
occlusal veneers even under high load 
requirements. Although there were 
no statistical differences between the 
composite resins tested, the absolute 
survival of all restorations in group XR 
can be explained by the improvement 
of mechanical properties through 
inclusion of fibers.46 While compos-
ite resin restorations are expected to 
wear more than ceramic, they also 
tend to preserve more of the antago-
nistic enamel.28 This differential wear 
of CAD/CAM composite resin and 
ceramic occlusal veneers requires ad-
ditional investigations, which is cur-
rently under way.

One should consider the discrep-
ancy between the clinical definition 
of mechanical “survival” or “fail-
ure,” usually based on the detec-
tion of cracks and fractures, and the 
“tooth-like” biomimetic approach to 
restorative dentistry.1 According to 
the latter, enamel that is shown to 
be weaker and more brittle than the 
weakest and most brittle ceramic (for 
example, ECAD in the present study), 
is also acknowledged to provide op-
timal function throughout a lifetime, 
even when cracked. Cracking is an 
accepted physiological aging process 
in enamel. Should cracking be con-
sidered acceptable for dental materi-
als too? The answer to this question 
is paramount to the interpretation of 
the present results and might gener-
ate a significant paradigm shift.47

CONCLUSIONS 

Within the limitations of this in 
vitro accelerated fatigue study, it was 
concluded that:

1. CAD/CAM composite resin ul-
tra-thin occlusal veneers significantly 
increased the fatigue resistance when 
compared to the ceramic ones. 

2. None of ECAD and EMAX ultra-
thin occlusal veneers withstood all 

185,000 load cycles (survival = 0%); 
with MZ 100 and XR the survival rate 
was 60% and 100%, respectively. 

3. There were no catastrophic fail-
ures but only cracks limited to the re-
storative material.

4. The CAD/CAM composite resins 
can be recommended for fabricating 
ultra-thin occlusal veneers in posterior 
teeth even in patients with high load 
requirements. 

5. Among ceramic groups, only 
EMAX successfully underwent the 
first part of the fatigue test and can 
be deemed indicated for ultra-thin oc-
clusal veneers under normal occlusal 
conditions.
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duce the increase in contact pressure. 
It was also important to ensure that 
the composite resin used for the fab-
rication of the load sphere was strong 
enough to undergo the entire fatigue 
test and maintain contact regardless 
of the load step. Therefore, the load 
cusps were carefully inspected at each 
load step and only one sphere had to 
be replaced due to delamination. A 
fully functional restored natural tooth 
could be simulated, which represents 
the uniqueness of this protocol. Sim-
ulation of the periodontal ligament 
was omitted, because elastomers or 
silicone films usually used for this 
purpose may have accelerated degra-
dation; this would allow for excessive 
displacement of the tooth and could 
destabilize the servo-hydraulic con-
trol system.

Enamel and dentin are unique tis-
sues with highly specialized function. 
When restoring a tooth one should 
consider not only the restorative ma-
terials that best emulates enamel and 
dentin, but also consider the simula-
tion of the DEJ through the interfacial 
restoration-dentin bond,30,31 which 
can be considered a true compos-
ite structure.25 Using extremely thin 
“enamel-like” restorations, the bond-
ing strategy becomes yet more impor-
tant. Immediate dentin sealing (to 
seal freshly cut dentin surfaces with 
a dentin bonding agent immediately 
following tooth preparation, prior to 
making impressions), associated with 
a preheated light-polymerized com-

posite resin restorative material, as a 
luting agent,11,30,31,38 were used in this 
study. The advantages of this tech-
nique39-41 were evident, since in the 
ceramic groups, only 3 restorations 
lost fragments (ECAD at > 1000N 
with minimal involvement of the den-
tin bond), while all of ECAD restora-
tions displayed multiple “mosaic-like” 
cracks (Fig. 6). Among practical ad-
vantages of using a light-polymerizing 
restorative material to cement the oc-
clusal veneer is the unlimited time to 
place the restoration (compensating 
the difficulty of positioning them, be-
cause of the lack of insertion path).

The results of the present study 
agree with the findings by Magne and 
Knezevic,30 who demonstrated an 
increase in fatigue resistance of end-
odontically treated molars restored 
with MZ100 when compared to por-
celain (MKII, VITABLOCS MARK II; 
Vident, Brea, Calif ). Nevertheless, in 
the present study, no specimen un-
derwent catastrophic failures in the 
remaining tooth structure. Cracks 
were restricted to the restorations 
and remaining enamel. This fact high-
lights the advantage of minimally in-
vasive strategies,13,14,42 preserving the 
structural integrity of the teeth. The 
first cracks (initial failure), observed 
in both ECAD and EMAX groups 
could be explained by a previous nu-
meric simulation.43 The high tensile 
stresses in the central groove could 
not be withstood by the brittle ce-
ramics.43 Therefore, the energy was 

released by means of new surfaces, 
namely cracks37 (Figs. 5 and 6). From 
the present data it appears that the 
higher uniaxial flexural strength of 
ceramic blocks (256 and 127 MPa 
for EMAX and ECAD, respectively), 
compared to that of composite resin 
blocks (150 and 170 MPa for MZ100 
and XR respectively), does not cor-
relate with the survival rate (Fig. 3). 
In fact, strength data alone is unable 
to predict accurately the structural 
failure in complex structures made 
from multilayered materials.44 The 
failure triggered by the development 
of tensile stresses is much more sen-
sitive to the ratios of elastic moduli 
between the restorative material and 
the luting material and dentin, and 
much less to the intrinsic strength 
as well as the thickness of the mate-
rial.37 The relatively similar elastic 
modulus of the composite resin (ap-
proximately16-20MPa) and dentin 
(approximately18.5GPa)45  may have 
a key role in the tooth-restoration 
performance of the composite resin 
groups. In addition, the findings seem 
to correlate with the work of fracture 
of the various materials (K1c2/Emod): 
XR (571 J/m2) > Paradigm MZ100 
(141 J/m2) > e.max CAD (83 J/m2) 
> Empress CAD (21 J/m2) (obtained 
from additional testing). The work of 
fracture represents the energy used 
within the fracture process where a 
new surface is generated and consid-
ers the elastic modulus of the mate-
rial. Because of their higher strength, 
EMAX restorations started cracking 
at a step above that of ECAD resto-
rations. This difference disappeared 
when the thickness of ECAD restora-
tions was increased, as demonstrated 
when comparing 0.6 mm and 1.2 
mm-thick ceramic occlusal restora-
tions (Table II). 

Assuming that the first cracks ap-
peared at relatively high loads (end 
of the first half of the test) and that 
none of the ultra-thin restorations 
lost fragments, the lithium disilicate 
blocks can be recommended in pa-
tients with standard load require-
ments. However, the horizontal com-

 6  Specimen after testing in group ECAD (“mosaic-like” cracks).

ponent from the axial loading was not 
able to threaten the composite resin 
restorations in both MZ100 and XR 
groups, confirming the possibility of 
using these materials for restoring 
posterior teeth with thin or ultra-thin 
occlusal veneers even under high load 
requirements. Although there were 
no statistical differences between the 
composite resins tested, the absolute 
survival of all restorations in group XR 
can be explained by the improvement 
of mechanical properties through 
inclusion of fibers.46 While compos-
ite resin restorations are expected to 
wear more than ceramic, they also 
tend to preserve more of the antago-
nistic enamel.28 This differential wear 
of CAD/CAM composite resin and 
ceramic occlusal veneers requires ad-
ditional investigations, which is cur-
rently under way.

One should consider the discrep-
ancy between the clinical definition 
of mechanical “survival” or “fail-
ure,” usually based on the detec-
tion of cracks and fractures, and the 
“tooth-like” biomimetic approach to 
restorative dentistry.1 According to 
the latter, enamel that is shown to 
be weaker and more brittle than the 
weakest and most brittle ceramic (for 
example, ECAD in the present study), 
is also acknowledged to provide op-
timal function throughout a lifetime, 
even when cracked. Cracking is an 
accepted physiological aging process 
in enamel. Should cracking be con-
sidered acceptable for dental materi-
als too? The answer to this question 
is paramount to the interpretation of 
the present results and might gener-
ate a significant paradigm shift.47

CONCLUSIONS 

Within the limitations of this in 
vitro accelerated fatigue study, it was 
concluded that:

1. CAD/CAM composite resin ul-
tra-thin occlusal veneers significantly 
increased the fatigue resistance when 
compared to the ceramic ones. 

2. None of ECAD and EMAX ultra-
thin occlusal veneers withstood all 

185,000 load cycles (survival = 0%); 
with MZ 100 and XR the survival rate 
was 60% and 100%, respectively. 

3. There were no catastrophic fail-
ures but only cracks limited to the re-
storative material.

4. The CAD/CAM composite resins 
can be recommended for fabricating 
ultra-thin occlusal veneers in posterior 
teeth even in patients with high load 
requirements. 

5. Among ceramic groups, only 
EMAX successfully underwent the 
first part of the fatigue test and can 
be deemed indicated for ultra-thin oc-
clusal veneers under normal occlusal 
conditions.
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Statement of problem. According to manufacturers, bonding with self-adhesive resin cements can be achieved 
without any pretreatment steps such as etching, priming, or bonding. However, the benefit of saving time with these 
simplified luting systems may be realized at the expense of compromising the bonding capacity.

Purpose. The purpose of this study was to assess whether different dentin conditioning protocols influence the bond 
performance of self-adhesive resin cements to dentin.

Material and methods. Flat dentin surfaces from 48 human molars were divided into 4 groups (n=12): 1) control, 
no conditioning; 2) H3PO4, etching with 37% H3PO4 for 15 seconds; 3) SEBond, bonding with self-etching primer 
adhesive (Clearfil SE Bond); and 4) EDTA, etching with 0.1M EDTA for 60 seconds. The specimens from each den-
tin pre-treatment were bonded using the self-adhesive cements RelyX Unicem, Maxcem or Multilink Sprint (n=4). 
The resin-cement-dentin specimens were stored in water at 37°C for 7 days, and serially sectioned to produce beam 
specimens of 1.0 mm2 cross-sectional area. Microtensile bond strength (µTBS) testing was performed at 1.0 mm/min. 
Data (MPa) were analyzed by 2-way ANOVA and Tukey multiple comparisons test (α=.05). Fractured specimens were 
examined with a stereomicroscope (x40) and classified as adhesive, mixed, or cohesive. Additional bonded interfaces 
were evaluated under a scanning electron microscope (SEM).

Results. Cement-dentin µTBS was affected by the dentin conditioning approach (P<.001). RelyX Unicem attained sta-
tistically similar bond strengths to all pre-treated dentin surfaces. H3PO4-etching prior to the application of Maxcem 
resulted in bond strength values that were significantly higher than the other groups. The lowest µTBS were attained 
when luting Multilink Sprint per manufacturers’ recommendations, while H3PO4-etching produced the highest values 
followed by Clearfil SE bonding and EDTA. SEM observations disclosed an enhanced potential of the self-adhesive ce-
ments to form a hybrid layer when applied following manufacturer’s instructions.

Conclusions. When evaluated self-adhesive resin cements are used, selectively etching dentin with H3PO4 prior to lut-
ing results in the most effective bonding. (J Prosthet Dent 2011;105:227-235)
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