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Abstract

A thorough understanding of the spatial 

distribution pertaining to the histo-ana-

tomic coronal structures and dynamic 

light interaction of the natural dentition 

provides the dental team with the ulti-

mate strategic advantage with regards 

to optical integration of the final restor-

ation. The second part of this two-part 

article will attempt to provide insight on 

the illumination interactivity and the spa-

tial arrangement of the coronal elements 

of natural teeth through the utilization of 

this knowledge in the clinical and techni-

cal restorative approach.

The main goals for this article are to cog-

nize histo-anatomic visualization by in-

troducing: (1) Dynamic light interaction, 

(2)  the 9 elements of visual synthesis, 

(3)  dynamic infinite optical thickness, 

and (4)  amplified visual perception ef-

fect of the hard dental tissues. Further-

more, a diversification of photographic 

illumination techniques will be illustrat-

ed in order to juxtapose optical asso-

ciations between the enamel/dentinoe-

namel complex/dentin nexus.

(Int J Esthet Dent 2014;9:xxx–xxx)
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Introduction

In the modern dental practice, recreat-

ing the optical features of the intact tooth 

presents a formidable task, due to the in-

herent translucent nature of enamel, the 

dentinoenamel complex (DEC) and den-

tin. Translucent materials offer a signifi-

cant color measurement challenge since 

they interact with light in a far more com-

plex manner than most other materials. 

While being translucent by nature, 

when coronal structures, such as enam-

el, the DEC and dentin, are compared 

among each other, they seem to pos-

sess relative translucency, transpar-

ency and opacity respectively (Fig  1). 

Anachronistic traditional visual estima-

tion approaches that solely employ the 

Munsell color model system based on 

hue, chroma, and value (H/C/V) domi-

nate the dental market appear to be 

inadequate when conveying the perti-

nent information among the dental team 

members (clinician/technician/patient). 

Further information regarding the de-

scription of surface texture, gloss, and 

luster (S/G/L) should also be appraised 

in conjunction with translucency, opal-

escence and fluorescence (T/O/F) as 

part of the process of visual assessment 

(Fig  2).

Dynamic light interaction

Reflection and refraction  
in enamel and dentin

Incident light ray interactivity with a tooth 

can be:

�� Reflected specularly and/or diffusely 

from its surface (Fig  3)

�� Refracted and either:

  –  scattered within it and subsequently 

reflected, a process largely respon-

sible for color perception (Fig  4)

  –  transmitted diffusely through it (re-

lating to the properties of transpar-

ency, translucency and opacity) 

(Fig  5)

  –  absorbed within it (the electromag-

netic energy is transformed to other 

forms of energy, eg, heat, photolu-

Fig 1  Relative attribution: although translucent by nature, the coronal structural elements can be graded 

with regards to their relative dynamic light interactivity and unique optical expression.
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Fig 2  Dynamic light interaction will generate the visual synthesis which is influenced by nine elements: 

surface texture, gloss and luster (S/G/L); hue, chroma and value (H/C/V) and translucency, opalescence 

and fluorescence (T/O/F).

Fig 3  The term reflectance is used to denote the fraction of light energy that is reflected by the surface 

of a given material. If the surface is not plane but curved, as is the case with enamel above, it may still be 

considered to be made up of many very small, elementary plane surfaces.

Fig 4  The term refraction is used to denote a change in direction of propagation of light waves as a result 

of its traveling at different speeds at different points among the wave front between mediums of varying 

optical densities. Primary subsurface scattering is denoted by the radial arrow depictions.
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Fig 5  Light interactivity model. From the cervical to the incisal regions, the dominance of the dentin core 

gradually gives way to that of the enamel shell respectively, achieving a brief equilibrium in the middle 

region. Multi-directional forms of scattering (colored arrows) and refractive index variations between the 

enamel/dentinoenamel complex/dentin substrates create infinite photonic pathways, collectively rendering 

a unique visual synthesis depending upon the incident light direction and intensity.
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minescence, photoelectric effect 

etc)

  –  re-radiated with a lower energy state 

(eg, fluorescence)

Relative refractive index

Due to the fact that enamel and dentin 

are heterogeneous hydrated substrates 

of variable inorganic and organic com-

position, one must consider collectively 

the volume fraction of their individual 

elemental component’s refractive index 

(RI), resulting in their respective relative 

refractive index (RRI). Moreover, de-

pending on the localized mineral content 

of these substrates, minor fluctuations 

in the RI may ensue, with the highest 

values always occurring within the more 

mineralized locations.1,2

The structural orientation and the ar-

rangement of the enamel prisms do not 

seem to have a significant effect on light 

attenuation, resulting in an RRI value of 

1.63.3,4 Unlike enamel, the structural ori-

entation and arrangement of the dentin 

tubules seem to play a significant role 

with regards to the RRI of dentin. Tra-

ditionally, dentin has been cited with a 

generalized RRI value of 1.54.3 Contem-

porary localized RRI values for dentin 

subadjacent to the dentinoenamel com-

plex (DEC) include 1.60 (cervical), 1.56 

(middle), and 1.49 (incisal).4

The DEC, being an organic proteina-

ceous continuum5 that is dominated pri-

marily by Type I collagen, has an RRI 

value of 1.43.6,7

Light guiding by scattering  
in enamel and dentin

The heterogenous composition and 

asymmetric directional distribution of 

the hard dental tissue structural compo-

nents add to the level of complexity with 

regards to microscopic light interactivity. 

Natural waveguides,8 such as enamel 

and dentin, are differentiated from con-

ventional optical fibers by being non-

uniform and containing scattering parti-

cles. Nonetheless, they have the ability 

to collect light and transport it purposely 

towards the pulp chamber (Fig  5).9-12 

Scattering generally implies a forced 

deviation of light from a straight trajec-

tory by localized non-uniformities (scat-

terers), found upon or within the me-

dium through which it interacts, without 

the loss of energy. Reflection, refraction 

and diffraction represent various forms 

of scattering. With regards to enamel 

and dentin, multiple scattering path-

ways are prevalent. In the quantum pic-

ture, when the wavelength (frequency) 

of the scattered light is the same as the 

incident light, elastic scattering occurs. 

Conversely, when the emitted radiation 

has a wavelength different from that of 

the incident radiation, inelastic scatter-

ing occurs.

The inorganic component of the den-

tal hard tissues is responsible for elastic 

scattering; via Rayleigh scattering (rath-

er isotropic, only depending on the po-

larization of the wavelength) in the case 

of enamel and via Mie scattering (rather 

anisotropic, forward scattering is pre-

dominant) in the case of dentin,13 while 

the organic component of the dental 

hard tissues is responsible for inelastic 

scattering; via fluorescence.
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Fig 6  The frontal longitudinal tooth section was submerged in distilled water and photographed on a 

black background. Despite using the same amount of direct reflective illumination per exposure, a direc-

tional change of 90 degrees reveals stunning and complex light transmissive and reflective pathways, 

emphasizing the optical anisotropy of dentin. Sharp details and remarkable contrast within the dentin shade 

is seen (c). Pronounced backscattering across the enamel prisms and the dentin tubules render a diffuse 

appearance obscuring critical details as evident in depiction (d), based on incident light direction. Paral-

lel illumination with respect to the long axis of the tooth present on the left and perpendicular on the right.
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In the case of enamel, major random 

scattering occurs on the ultrastructur-

al level from the hydroxyapatite (HAp) 

crystal subunits, whereas minor random 

scattering occurs on the microstructural 

level due to the prism sheaths/interpris-

matic material orientation in conjunc-

tion with the sinuous paths of Hunter-

Schreger bands.14,15 The scattering 

coefficient appears to increase with 

shorter wavelengths,16 while thin enam-

el sections also exhibit a Fraunhofer dif-

fraction pattern in the plane perpendicu-

lar to the enamel prisms,17 acting as a 

diffraction grating which in turn may be 

responsible for generating iridescent re-

flections (Fig  6).

In the case of dentin, multiple direc-

tional scattering occurs on the micro-

structural level due to the presence and 

spatial arrangement of the dentin tubules 

and the collagen fiber mesh.14,18,19 In 

contrast with enamel, the scattering co-

efficient does not change significantly 

with wavelength.20 Directly below the 

DEC, scattering is decreased due to 

low tubule density with small tubule size, 

compared to the dentin directly adja-

cent to or above the pulp due to high 

tubule density with large tubule size.21 

Thus there exists a significant translu-

cency gradient, that of superficial den-

tin which is more translucent and that of 

deep dentin, which is three times more 

opacious.22 Additionally, the regional 

variation of dentin tubule orientation is of 

particular relevance with regards to light 

transmission, rendering cervical dentin 

as highly transmissive, middle dentin 

as moderate, and incisal dentin as low 

(Fig  7).

Conversely, the DEC lacks significant 

scatterers. The elevated lateral light dif-

fusion that occurs at the DEC has been 

described as the “glass layer” or “high 

diffusion layer” or “brilliance zone.”23,24 

Factors that may be considered for this 

enhanced light diffusion is that the in-

ner aprismatic enamel presents a more 

uniform HAp crystal orientation, con-

Fig 7  Dentin subadjacent to the DEC exhibits a transitional orthogonal rotational orientation from cervical 

to incisal with regards to the dentin tubules. Hence, despite the fact that cervical dentin is thicker, due to 

the parallel orientation of of the tubules, it is rendered more translucent. The opposite happens with respect 

to incisal dentin, despite the fact that it is thinner, due to the perpendicular orientation of the tubules, it is 

rendered more opacious.

Dentin tubule direction at the DEC

parallel 0°

oblique 45°

perpendicular 90°

POV
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Fig 8  Direct illumination is used to enhance the sensation of surface topography of the maxillary central 

incisors. Moderate wear is viewed on the vertical developmental lobular heights of contour whereas the 

concave depressions have retained parts of their original horizontal structural anatomy; diffuse light was 

utilized via indirect illumination to enhance the sensation of gloss and luster.
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sequently producing an elevated light-

flux density concentration at this junc-

tion,25,26 while the underlying mantle 

dentin exhibits low tubule density and 

small tubular size, providing minimal 

scattering. Furthermore, the change in 

the RRI between dentin and enamel re-

sults in partial reflections of light at this 

junction and theoretically, when condi-

tions are favorable for short distances, 

localized total internal reflections may 

be attained. 

The nine elements  
of visual synthesis

Descriptive surface elements 

Surface texture
Surface texture describes the physical 

characteristics of the enamel surface, 

being directional (vertical developmen-

tal lobes/horizontal cervical ridges) and 

structural (perikymata). Perpetual sur-

face texture adaptation is a function of 

the inherent microstructure at eruption 

and the subsequent physical and chem-

ical processes that modify it: attrition, 

abrasion, and erosion (Fig  8).

Gloss 
Gloss describes the visual perception 

based on the interaction of light with the 

physical characteristics of the enamel 

surface, relating to the ability to reflect 

light in a specular (“glossy appearance” 

observed on polished convex con-

tours) or diffuse (“matte appearance” 

observed within concave depressions) 

manner. Like color, it exhibits physical, 

physiologic, and psychological aspects 

(Fig  8).

Luster 
Luster describes the qualitative correla-

tion of the visual appearance produced 

by the reflection of light with the enamel 

surface. Also known as contrast gloss, 

luster can be somewhat subjective, ex-

pressed in relative terms such as satin-

like, pearly, metallic, glass-like (Fig  8).

Objective color elements

Hue
Hue Is defined as the name that distin-

guishes one family of colors from an-

other. Hue is specified as the dominant 

range of wavelengths in the visible spec-

trum that yields the perceived color.27 

The base shade of dentin primarily de-

termines the hue of a tooth.28,29 Hue can 

be considered the quality of pigment 

(Figs  9 and 10).

Chroma
Chroma is defined as the saturation, 

intensity, or strength of the hue. Unlike 

value, which occurs independently of 

hue, chroma is only present when there 

is hue.30 Chromaticity is an objective 

specification of the quality of a color 

regardless of its value, that is, as de-

termined by its hue and chroma, and 

is readily visualized via cross-polarized 

reflective photography (Figs  9 and 10).

Value
Value is defined as the relative white-

ness or blackness of a color and is de-

termined by comparing it to a gray of 

similar brightness. Value is also called 

lightness, brightness or luminance 

(Figs  9 and 10).
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Fig 9  The intact teeth comprising the maxillary triad were extracted concurrently due to periodontal 

reasons and deemed as exemplary dental specimens for exploring interdental structural and optical 

inter-relationships. Aggressive acidulation led to the selective enamel dissolution and revealed the dentin 

substructure. Lobular coalescence is particularly prevalent in the central incisor.
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Fig 10  The objective color elements as viewed and estimated; general congruency is observed among 

the cervical (C), middle (M) and incisal (I) thirds amongst the maxillary triad. A multitude of hues is found 

at the incisal third due to the phenomena of opalescence and counter-opalescence. Chroma is more pro-

nounced at the cervical third due to the thickness of dentin.31 In all instances Value is highest at the middle 

third, due to the fact that the enamel and dentin present an equilibrium in terms of thickness ratios.32
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Subjective optical elements

Translucency
Translucency is defined as a gradi-

ent between transparency (complete 

transmission of light) and opacification 

(complete reflection of light). The light 

transmission of enamel has been shown 

to be wavelength specific, age related 

and is influenced by its state of hydra-

tion. A decrease in translucency during 

dehydration is explained as a result of 

an increased difference in refractive in-

dices between the enamel prisms and 

the surrounding medium when water is 

replaced by air.33

Opalescence
Known as the Rayleigh scattering ef-

fect; enamel demonstrates this dichroic 

effect, which is caused by scattering 

particles with typical dimensions much 

smaller than the wavelength of illumina-

tion used. The mineral crystals present 

in the enamel prism (measuring 4  μm 

wide to 8  μm high) meet this property be-

cause the HAp subunit crystals exhibit 

thicknesses of 25 to 40  nm, and widths 

of 40 to 90  nm. For that reason the short 

blue wavelengths reflect preferentially 

from the enamel, while the longer am-

ber wavelengths transmit accordingly 

through it (Fig  11).

Fluorescence
An example of photoluminescence is a 

phenomenon in which invisible UV light 

is absorbed and then re-emitted almost 

immediately34 (10-8 s) at a less energet-

ic wavelength in the visible spectrum. 

Enamel and dentin both possess fluo-

rescent properties, with dentin generally 

exhibiting three times the intensity than 

that of enamel35 upon longitudinal sec-

tion, emitting a white-blue luminescence 

after excitation, imparting additional vi-

tality and brightness to the natural tooth 

appearance predominantly in UV rich 

environments only. The DEC also exhib-

its elevated fluorescence due to the col-

Fig 11  The longitudinal histological tooth section of a maxillary central incisor, 1  mm in thickness, was 

submerged in distilled water and photographed via transmissive illumination (upper) and reflective illumina-

tion (lower) to epitomize the opalescent nature of enamel.
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lagen-rich, highly cross-linked composi-

tion, with primary intrinsic (endogenous) 

fluorophores being the aromatic amino 

acid tryptophan36,37 and the collagen 

cross-linking agent hydroxypyridium 

(Fig  12).38

Dynamic infinite optical 
thickness

Perceived color can be considered a 

combination of the reflected color of the 

translucent enamel layer plus the color 

reflected from the underlying relatively 

opacified dentin layer. As the enamel 

and dentin layers vary inversely in rela-

tive thickness from cervical to incisal, 

the amount of color contribution from 

the two tissues will be reciprocal (vice 

versa) (Figs  13 and 14).44–46

The thickness of a given translucent 

material at which any further material ad-

dition does not alter the transmission of 

light, nor the perceived reflected color 

of that material either on a white or black 

background, defines its infinite optical 

thickness (IOT).

Although light transmission in enamel 

at 1  mm has been tentatively measured 

to be 66% ± 11%, while that of dentin at 

1  mm is 44% ± 12%,47 one must con-

sider the significance of sample loca-

tion, the relative thickness distribution of 

both tissues as well as stage of tissue 

maturation.48 

With regards to dynamic aging on 

the macrostructural level, enamel inad-

vertently goes through a volumetric re-

duction via functional wear, mechanical 

abrasion and chemical erosion, result-

ing externally in a hyperpolished sur-

face. Conversely, internally the dentin 

volume increases via secondary and 

tertiary dentin deposition. 

On a microstructural level, a signifi-

cant reduction in the porosity of the 

enamel is due to posteruptive matura-

tion via hypermineralization49–51 and 

homogenization leading to HAp crys-

Fig 12  A submerged maxillary premolar was photographed with reflected long wavelength UV illumina-

tion (365  nm), enabling the visualization of dentin exhibiting three times the fluorescence intensity than that 

of enamel. Note that the DEC also exhibits pronounced fluorescence.39-41
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tal elongation,52 while in a homologous 

manner, hypermineralization of dentin 

ensues via natural tubular obliteration, 

rendering dentin more translucent over 

time.

Due to this dynamic cycle of events, 

juvenile enamel, which is thicker, pos-

sesses a texturized surface and is com-

posed of small HAp crystals, appearing 

to be translucent white (higher value) 

due to more light scattering, while adult 

(and senior) enamel, which is thinner, is 

characterized by a polished surface and 

composed of large HAp crystals, thus 

appearing more transparent grey (lower 

value) due to less light scattering.

Further research is desired in order 

to estimate the dynamic IOT values for 

enamel and dentin at different stages of 

tissue maturation, thus establishing uni-

versal industry standards for composite 

resins and etchable ceramics. Possess-

ing knowledge of the dynamic IOT and 

the degree of translucency and opacity 

of dental resins53,54 and etchable ce-

ramics at given thicknesses will auto-

matically enable clinicians and techni-

cians to strategize accordingly in order 

Fig 13  Individual and pooled averages with regards to labial enamel thickness for the maxillary triad at 

the cervical (C), middle (M) and incisal (I) thirds.44-46
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to provide adequate tooth reduction to 

meet the specific objectives that are re-

quired. 

Amplified visual  
perception effect

Due to the convex lens-like shape of 

enamel in conjunction with possessing 

an RRI of 1.63, optical distortion oc-

curs. Thus, light being refracted within 

enamel, the DEC and subsequently in-

ternally reflected from dentin produces 

a stunning effect; an optical illusion of 

magnification55 and spatial proximity is 

perceived with regards to the underlying 

dentin mamelons. This apparent mag-

nification manifests in an incisobuccal 

direction, creating an optical illusion with 

regards to the position and dimension 

of dentin mamelons. This optical illusion 

is subdued in part by the birefringent 

nature of enamel, obscuring details ren-

dering a hazy net appearance (Fig  15). 

Concurrently, dentin also exhibits mag-

nification properties56,57 due to the di-

vergent radial fanning of the dentin tu-

Fig 14  Pooled averages with regards to labial dentin thickness for the maxillary triad at the cervical (C), 

middle (M) and incisal (I) thirds.44
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bules when light is reflected internally 

from the deeper strata.

Diversification of  
photographic illumination 
techniques

Intact dental specimens provide the ul-

timate reference for the perpetual de-

votion of time and attention to acquire 

the needed knowledge with regards to 

visual interpretation.58,59

Over the last decade, there has been 

profound interest in alternative photo-

graphic techniques aimed at increasing 

the accuracy and objectivity of dental 

shade evaluation and laboratory com-

munication. In order to minimize the 

user-dependent error in future clinic-

al practice, it is necessary to develop 

standardized, reproducible imaging 

modalities and objective image analysis 

methods (Figs  16 and 17).

Reflective Illumination

Direct reflective illumination utilizing a 

macro twin flash, via manual standardi-

zation of power output, remains the pho-

Fig 15  Enamel is responsible for creating an optical illusion of the apparent versus the actual position 

with regards to the visualization of the underlying incisal dentin.

apparent dentin mamelons

actual dentin mamelons
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Fig 16  Facial illumination techniques from top to 

bottom: reflective, reflective cross-polarized, reflec-

tive UV and transillumination.

Fig 17  Palatal illumination techniques from top to 

bottom: reflective, reflective cross-polarized, reflec-

tive UV and transillumintion.
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tographic standard for providing pre-

dictable and repeatable levels of light 

for shade estimation. Indirect reflective 

illumination (Lumiquest, Pocket Bounc-

ers,) on the other hand, aids in revealing 

fine surface texture details.

Reflective cross-polarized  
illumination

This photography technique significant-

ly mitigates unwanted specular reflec-

tions which obscure the fine details of 

dental structures23,60, while providing a 

high contrast/hypersaturated dental im-

age to be objectively analyzed via a cali-

brated RAW workflow utilizing a generic 

software program (Adobe Photoshop) 

in the CIE L*a*b color space. To obtain 

such a photographic image intraorally, 

a cross-polarization filter is utilized (po-

lar_eyes, Emulation).

UV Illumination 

Ultraviolet Illumination is utilized in or-

der to induce fluorescence and aid in 

the selection of the restorative material 

(etchable ceramics and resins) with a 

similar fluorescence intensity,61-63 pro-

viding the restoration with optimal inte-

gration primarily in the event of exposure 

to a UV dominant lighting environment, 

such as a dancehall or a nightclub. To 

obtain such an image intraorally, a cus-

tom modified xenon flash tube is utilized 

(fluor_eyes, Emulation).

Transillumination

Transillumination reveals histo-anatomic 

relative opacity levels (transparent den-

tin vs opaque) and visual quantitative 

estimation of incisal enamel distribu-

tion. Opalescence may also be visually 

assessed and gauged via this type of 

photography. To obtain such an image 

intraorally, a fiber optic transilluminator 

is utilized (Micro-Lux, AdDent).

Discussion

The restorative task is elaborated along 

four levels of integration: biological, 

functional, mechanical, and optical. 

To meet contemporary challenges, the 

dental team must enhance its capacity 

in all four levels equally. 

From an optical standpoint in ambi-

ent light, enamel can be considered 

isotropic, with the visual gradient being 

expressed in the vertical direction (cer-

vical/incisal) due to thickness variation, 

whereas dentin can be considered ani-

sotropic, with the visual gradient being 

expressed: a) in a radial direction due 

to the dentin tubule attributes of diam-

eter and density (qualitiative), and b) in a 

horizontal zonal direction (cervical/mid-

dle/incisal) due to thickness variation 

and differing RRI indexes (quantitative). 

Hue and chroma are predominately 

determined by the properties of dentin, 

dynamically changing over time as sec-

ondary deposition occurs. In some in-

stances, as in the cases of severe incisal 

wear, dentin can be breached to such 

an extent that external chromophores 

become readily absorbed, resulting in 

infiltration staining (Fig  10). 

While the opacity of dentin provides 

and establishes a baseline for value, the 

luminosity is predominately regulated by 

the properties of enamel. The surface 

texture influences the primary interac-
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Fig 18  Stone replicas facilitate visual assessment and rumination of the variability between enamel and 

dentin surface topography. Mesiobccal (left) and Mesiopalatal (right) oblique views of central incisor, 

lateral incisor and canine (top to bottom). Generalized external enamel macromorphological congruency 

is seen upon the dentin counterpart, with amplified vertical corrugations, providing added roughness and 

waviness that is critical to be emulated during restorative stratification techniques.64
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tion of the incident light. A highly tex-

tured surface renders higher amounts of 

diffuse surface scattering, thus elevat-

ing the perceived value, appearing to 

be more translucent. This is in contrast 

to a smooth surface, which would ex-

hibit lesser amounts of diffuse surface 

scattering, thus demoting the perceived 

value, and appearing to be more trans-

parent. The relative thickness of enamel 

dictates the proportional amount of dif-

fuse subsurface scattering (quantita-

tive), while the degree and postmatura-

tion stage of the HAp crystals affects the 

type of photonic interaction (qualitative). 

Transparency, translucency and 

opacification are all visual representa-

tions of the amount of light that is scat-

tered and subsequently reflected to the 

observer by the microstructural features 

of a given substrate. Embracing the 

paradigm shift of thinking in terms of dy-

namic light interactivity via the principle 

of scattering enables the clinician and 

technician to choose the level of sophis-

tication within the stratification protocol 

they opt to employ; a trilaminar technique 

(enamel/DEC/dentin) for a simplex inter-

pretation or a pentalaminar technique 

(Exo enamel/eso enamel/DEC/exo den-

tin/eso dentin) for a complex one. The 

utilization of this knowledge in the clin-

ical and technical restorative approach 

is to be described thoroughly in articles 

that will be published in future issues of 

this journal.

Conclusion

This article presented fundamental yet 

simplified photonic interactions with re-

gards to the histoanatomic elements, ren-

dering the final visual synthesis. It should 

be emphasized that a thorough under-

standing of the light propagation within 

the coronal structures is a prerequisite 

in order to elucidate color and shade, 

however mastery of spatial distribution 

of the three-dimensional histoanatomic 

relationships is paramount in the quest 

for restorative dental emulation (Fig  18).
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